Tuesday, August 15, 2017

Tunable Diode Laser Gas Analyzers Incorporated in CEMS

cabinetized extractable tunable diode laser emissions monitoring systems
TDL analyzers cabinetized in extractive
emissions monitoring system
Image courtesy CEMTEK Environmental
Tunable diode laser absorption spectrometers provide high sensitivity and specificity in the measurement of flue gas component concentration. They are well suited for continuous emissions monitoring systems used for EPA compliant or non-compliant applications. The rugged unit design and low maintenance requirement makes the TDL technology suitable for in situ monitoring of stack emissions.

TDL spectroscopy, packaged specifically for emissions monitoring applications, offers calibration stability and fast in situ measurement. It can also be applied in a manner that avoids interference from other gases present in the sample or stack. Industrial operations, whether for direct process control or emissions compliance monitoring, have a need for accurate, reliable measurement of specific gas concentrations within a flowing medium. Tunable diode laser spectroscopy, configured for industrial use, provides a number of substantially positive attributes for these applications.

More information is provided in the document included below. Share your combustion efficiency and emissions monitoring requirements and challenges with product application specialists, combining your own knowledge and experience with their product application expertise to develop an effective solution.


Wednesday, August 9, 2017

Industrial Wireless as Mainstream Connection Method For Process Measurement

industrial wireless modems
Industrial wireless modems, one of many options
when establishing wireless connections.
Image courtesy Eaton - ELPRO Technologies
Wireless connections to process instrumentation has evolved to a point where it is uncomplicated and inexpensive. Many facilities rely on wireless connections, either via a network (wifi) or point to point communications. The benefits of wireless are well known to those already among users of the technology.
  • Safety: Wireless connections can reduce personnel exposure to hazardous environments or situations that previously required human intervention or a manual gauge or instrument reading.
  • Easy Scale-up: Adding points on a network is generally a simple incremental process.
  • Operational Advantage: When deployed to replace manual instrument or gauge readings, real time data for diagnostics and efficiency measurements are now available. Information that is more accurate, timely, and consistent will produce better results.
  • Installation Savings: Installation of wireless connected assets has been reported to be up to 10 times less expensive than wired installation. The reduced space and planning for cables and conduit can make what were once complex and time consuming operations much quicker and easier.
  • Mobility: Wireless technology allows for real time connections to mobile platforms. Whether within a plant, on the road, or on the high seas, there are wireless products that can make the connection.
  • Distance: Don't just think WiFi, think radio, think satellite, think cellular. Connections can be established across very long distances using standard products from the industry.
  • Conversion of Legacy Devices: Many existing in-place devices can have their wired connections replaced with a wireless version. This accommodates a staged transition from wired to wireless in facility.
The transmission is accomplished in either the 900 MHz or 2.4 GHz band, delivering adequate range and power for most facility-wide applications. Obstructions can be overcome with the use of a strategically located repeater. Properly planned and configured, there are few limits to the distance a wireless connection can span.

Point to point wireless connections between, for example, a temperature transmitter and a recorder are easy to create. Most process sensors have very small power requirements, as do the Analynk transmission units. Power, if line voltage is not available at the location, can be provided by batteries, or combination of battery and photovoltaic. The 4-20 mA signal from the temperature transmitter serves as the input signal to the wireless transmitter. The analog signal is converted to a digital value and encrypted prior to transmission. A receiver at the recorder decrypts the digital signal and converts it back to a 4-20 mA analog output that serves as the input signal to the recorder. Wireless transmitter and receiver must be set to the same channel, but otherwise, the equipment handles all the work. If you can find your way around a smart phone, you can make a wireless point to point process connection.

There are likely many applications going unfulfilled because the cost or feasibility of making a wired connection is holding the project back. Reconsider the project using industrial wireless technology and you may find that the project becomes an attractive prospect.

Share your connectivity challenges with the application specialists at Arjay Automation, combining your own process knowledge and experience with their wireless communications expertise to develop an effective solution.


Friday, July 21, 2017

Turck Industrial Temperature Sensors



The Turck TS516 and TS530 temperature sensors are designed with permanently attached probes for direct insertion into a process via the 1/2" threaded fitting. The platinum measuring element provides fast and accurate temperature readings, with local processing and display provided by the encapsulated signal processor. Analog current output, as well as switch outputs are available, and the devices support the IO-Link communication standard.

Take a closer look in the video included here, and share your connectivity and process measurements requirements and challenges with application experts to develop effective solutions.

Thursday, July 20, 2017

Diaphragm Seals Available in Every Conceivable Configuration

flush face flange diaphragm seal on smart transmitter
Diaphragm seals isolate instruments from process fluids
Image courtesy REO Temp
Pressure measurement is a common element of industrial operations and control systems. Fluid processing can often involve media that is potentially harmful to pressure sensing devices. The media may be corrosive to the sensor material, or other media properties may impact the performance or usable life of the instrument. In process control environments, diaphragm seals play a role in protecting items like pressure sensors from damage by process fluids. The diaphragm seal is a flexible membrane that seals across the connecting path to a sensor and isolates the sensor from the process media. System pressure crosses the barrier without inhibition, enabling accurate measurement, but the process fluid does not. Typical materials composing diaphragm seals are elastomers, with a wide variety of specific materials available to accommodate almost every application.

In the operating principle of the diaphragm seal, the sealed chamber created between the diaphragm and the instrument is filled with an appropriate fluid, allowing for the transfer of pressure from the process media to the protected sensor. The seals are attached to the process by threaded, open flange, sanitary, or other connections. Diaphragm seals are sometimes referred to as chemical seals or gauge guards. Stainless steel, Hastelloy, Monel, Inconel, and titanium are used in high pressure environments, and some materials are known to work better when paired with certain chemicals.

Sanitary processes, such as food, beverage, and pharmaceuticals, use diaphragm seals to prevent the accumulation of process fluid in pressure ports, a possible source of contamination. If such a buildup were to occur, such as milk invading and lodging in a port on a pressure gauge, the resulting contamination compromises the quality and purity of successive batches. Extremely pure process fluids, like ultra-pure water, could be contaminated by the metal surface of a process sensor. Some pneumatic systems rely on the elimination of even the smallest pressure fluctuations, and diaphragm seals prevent those by ensuring the separation of the process materials from the sensors.

Diaphragm seals are not without some application concerns, and devices are now built to address and counter many potential issues related to the use of diaphragm seals with process monitoring instruments and equipment. Products seek to eliminate any and all dead space, allow for continuous process flow, and are self-cleaning thanks to continuous flow design. Some high pressure seals come equipped with anti-clogging features, accomplished by the elimination of internal cavities while protecting gauges. Multi-purpose seals reduce temperature influence and improve instrument performance while pinpointing and diffusing areas of high stress. These pre-emptive measures result in longer instrument life-cycles and improved performance while ensuring protection from corrosion.

There are numerous options and available diaphragm seal variants. Share your application specifics with a product specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Friday, July 7, 2017

Water Quality Analysis – Constituent Survey Part 3

steam turbine
Silica can have an impact on the performance and longevity
of steam turbines
What we know as “water” can consist of many non-H2O components in addition to pure water. This three part series has touched on some of the constituents of water that are of interest to various industrial processors. The first installment reviewed dissolved oxygen and chloride. The second article covered sulfates, sodium, and ammonia.

To conclude the three part series on water quality analysis in process control related industrial applications we examine silica, another element which in sufficient quantities can become a confounding variable in water for industrial use. In natural settings, silica, or silicon dioxide, is a plentiful compound. Its presence in water provides a basis for some corrosion-inhibiting products, as well as conditioners and detergents. Problems arise, however, when high concentrates of silica complicate industrial processes which are not designed to accommodate elevated levels. Specifically, silica is capable of disrupting processes related to boilers and turbines. In environments involving high temperature, elevated pressure, or both, silica can form crystalline deposits on machinery surfaces. This inhibits the operation of turbines and also interferes with heat transfer. These deposits can result in many complications, ranging through process disruption, decreased efficiency, and resources being expended for repairs.

The silica content in water used in potentially affected processes needs to be sufficiently low in order to maintain rated function and performance. Silica analyzers provide continuous measurement and monitoring of silica levels. The analyzers detect and allow mitigation of silica in the initial stages of raw material acquisition or introduction to prevent undue disruption of the process. Additionally, a technique called power steam quality monitoring allows for the aforementioned turbine-specific inhibition – related to silica conglomerates reducing efficacy and physical movement – to be curtailed without much issue. The feedwater filtration couples with a low maintenance requirement, resulting in reduced downtime of analytic sequences and a bit of increased peace of mind for the technical operator.

While silica and the other compounds mentioned in this series are naturally occurring, the support systems in place to expertly control the quality of water is the most basic requirement for harvesting one of the earth’s most precious resources for use. As a matter of fact, the identification and control of compounds in water – both entering the industrial process and exiting the industrial process – demonstrates key tenets of process control fundamentals: precision, accuracy, durability, and technological excellence paired with ingenuity to create the best outcome not just one time, but each time.

Share your water monitoring and analytical challenges with specialists in process measurement. The combination of your own knowledge and experience with their product application expertise will result in an effective solution.

Wednesday, June 21, 2017

Water Quality Analysis – Constituent Survey (Part 2)

aerial view of wastewater treatment plant
Effective treatment of wastewater requires analytical
measurement to determine the level of various contaminants.
It would be difficult to understate the role and importance of water in industrial processing, even our own biological existence. In the first installment of this series, the roles of dissolved oxygen and chlorides were covered.

Continuing the examination of water quality monitoring in municipal and industrial processes, another key variable which requires monitoring for industrial water use is sulfate. Sulfate is a combination of sulfur and oxygen, salts of sulfuric acid. Similarly to chlorides, they can impact water utilization processes due to their capability for corrosion. The power generation industry is particularly attuned to the role of sulfates in their steam cycle, as should be any boiler operator. Minerals can concentrate in steam drums and accelerate corrosion. Thanks to advancements in monitoring technology, instruments are available which monitor for both chlorides (covered in the previous installment in this series) and sulfates with minimal supervision needed by the operator, ensuring accurate detection of constituent levels outside of an acceptable range. Ionic separation technologies precisely appraise the amount of sulfate ions in the stream, allowing for continuous evaluation and for corrective action to be taken early-on, avoiding expensive repairs and downtime.

Another substance worthy of measurement and monitoring in process water is sodium. Pure water production equipment, specifically cation exchange units, can be performance monitored with an online sodium analyzer. Output from the cation bed containing sodium, an indication of deteriorating performance, can be diverted and the bed regenerated. Steam production and power generation operations also benefit from sodium monitoring in an effort to combat corrosion in turbines, steam tubes, and other components. Sodium analyzers are very sensitive, able to detect trace levels.

Ammonia is comprised of nitrogen and hydrogen and, while colorless, carries a distinct odor. Industries such as agriculture utilize ammonia for fertilizing purposes, and many other specializations, including food processing, chemical synthesis, and metal finishing, utilize ammonia for their procedural and product-oriented needs. An essential understanding of ammonia, however, includes the fact that the chemical is deadly to many forms of aquatic life. Removing ammonia from industrial wastewater is a processing burden of many industries due to the environmental toxicity.

Methods for removing ammonia from wastewater include a biological treatment method called ‘conventional activated sludge’, aeration, sequencing batch reactor, and ion exchange. Several methods exist for in-line or sample based measurement of ammonia concentration in water. Each has particular procedures, dependencies, and limitations which must be considered for each application in order to put the most useful measurement method into operation.

As water is an essential part of almost every facet of human endeavor and the environment in which we all dwell, the study and application of related analytics is an important component of many water based processes. The variety of compounds which can be considered contaminants or harmful elements when dissolved or contained in water presents multiple challenges for engineers and process operators.

Share your water analysis and treatment challenges with application specialists, combining your own knowledge and experience with their product application expertise to develop effective solutions.

Saturday, June 17, 2017

Water Quality Analysis – Constituent Survey (Part 1)

industrial water quality
Water constituent analysis using instrumentation benefits
process operation
Of all the raw materials available for human consumption – aside from the air we breathe – the most vital component of life on earth is water. In addition to the global need for humans to drink water in order to survive, the use of water is essential in a myriad of industries relating to process control. Whether the goal is the production or monitoring of pure water for industrial use, or the processing of wastewater, the ability to measure the presence and level of certain chemical constituents of water is necessary for success.

In order to use water properly, industrial professionals combine state of the art analyzers with technical expertise to evaluate water quality for use or disposal. Two essential values of process control are ensuring elements of a control system are accurate and secure, and, furthermore, that they are accurate and secure for each product every time. By properly vetting water in industry, engineers and other personnel in fields such as pharmaceuticals, chemical, food & beverage, brewing, power, and microelectronics are able to maintain standards of production excellence and conform with regulatory requirements related to water quality.

The amount of dissolved oxygen present in water can correlate with the degree of movement at an air-water interface, also being impacted by pressure, temperature, and salinity. Excessive or deficient dissolved oxygen levels in industrial process waters may have an impact on process performance or end product quality. Likely, the most common application for dissolved oxygen measurement is in the evaluation of wastewater for biological oxygen demand. The primary function of dissolved oxygen in wastewater is to enable and enhance the oxidation of organic material by aerobic bacteria, a necessary step in treatment.

To measure dissolved oxygen, specialized sensors and companion instruments are employed that require careful maintenance and trained technical operators. The level of measurement precision varies depending on the industry employing the technology, with numerous applications also being found in the food & beverage and pharmaceutical industries. In-line continuous measurement is used in wastewater processing to determine if the dissolved oxygen remains in a range that supports the bacteria necessary for biodegradation.

Chloride concentration in wastewater is strictly regulated. Industrial and commercial operation effluent can be regulated with respect to allowable chloride content. While commonly found in both streams and wastewater, chlorides, in large amounts, can present challenges to water utilization or processing facilities. Chloride levels impact corrosion, conductivity, and taste (for industries in which such a variable is paramount). In a process system, having an essential component marred due to elevated quantities of a substance could reverberate into any end-product being manufactured. Chloride analyzers, some of which can also detect and monitor other water characteristics, serve as important tools for water consuming facilities to meet regulatory standards for effluent discharge or internal quality standards for recycling.

There are other constituents of what we refer to as “water” that are subject to measurement and monitoring for a range of institutional, industrial, and municipal applications. Those will be explored in the next part of this article series.

Share your water quality analytical challenges with application specialists, combining your own knowledge and experience with their product application expertise to develop effective solutions.