Tuesday, August 15, 2017

Tunable Diode Laser Gas Analyzers Incorporated in CEMS

cabinetized extractable tunable diode laser emissions monitoring systems
TDL analyzers cabinetized in extractive
emissions monitoring system
Image courtesy CEMTEK Environmental
Tunable diode laser absorption spectrometers provide high sensitivity and specificity in the measurement of flue gas component concentration. They are well suited for continuous emissions monitoring systems used for EPA compliant or non-compliant applications. The rugged unit design and low maintenance requirement makes the TDL technology suitable for in situ monitoring of stack emissions.

TDL spectroscopy, packaged specifically for emissions monitoring applications, offers calibration stability and fast in situ measurement. It can also be applied in a manner that avoids interference from other gases present in the sample or stack. Industrial operations, whether for direct process control or emissions compliance monitoring, have a need for accurate, reliable measurement of specific gas concentrations within a flowing medium. Tunable diode laser spectroscopy, configured for industrial use, provides a number of substantially positive attributes for these applications.

More information is provided in the document included below. Share your combustion efficiency and emissions monitoring requirements and challenges with product application specialists, combining your own knowledge and experience with their product application expertise to develop an effective solution.


Wednesday, August 9, 2017

Industrial Wireless as Mainstream Connection Method For Process Measurement

industrial wireless modems
Industrial wireless modems, one of many options
when establishing wireless connections.
Image courtesy Eaton - ELPRO Technologies
Wireless connections to process instrumentation has evolved to a point where it is uncomplicated and inexpensive. Many facilities rely on wireless connections, either via a network (wifi) or point to point communications. The benefits of wireless are well known to those already among users of the technology.
  • Safety: Wireless connections can reduce personnel exposure to hazardous environments or situations that previously required human intervention or a manual gauge or instrument reading.
  • Easy Scale-up: Adding points on a network is generally a simple incremental process.
  • Operational Advantage: When deployed to replace manual instrument or gauge readings, real time data for diagnostics and efficiency measurements are now available. Information that is more accurate, timely, and consistent will produce better results.
  • Installation Savings: Installation of wireless connected assets has been reported to be up to 10 times less expensive than wired installation. The reduced space and planning for cables and conduit can make what were once complex and time consuming operations much quicker and easier.
  • Mobility: Wireless technology allows for real time connections to mobile platforms. Whether within a plant, on the road, or on the high seas, there are wireless products that can make the connection.
  • Distance: Don't just think WiFi, think radio, think satellite, think cellular. Connections can be established across very long distances using standard products from the industry.
  • Conversion of Legacy Devices: Many existing in-place devices can have their wired connections replaced with a wireless version. This accommodates a staged transition from wired to wireless in facility.
The transmission is accomplished in either the 900 MHz or 2.4 GHz band, delivering adequate range and power for most facility-wide applications. Obstructions can be overcome with the use of a strategically located repeater. Properly planned and configured, there are few limits to the distance a wireless connection can span.

Point to point wireless connections between, for example, a temperature transmitter and a recorder are easy to create. Most process sensors have very small power requirements, as do the Analynk transmission units. Power, if line voltage is not available at the location, can be provided by batteries, or combination of battery and photovoltaic. The 4-20 mA signal from the temperature transmitter serves as the input signal to the wireless transmitter. The analog signal is converted to a digital value and encrypted prior to transmission. A receiver at the recorder decrypts the digital signal and converts it back to a 4-20 mA analog output that serves as the input signal to the recorder. Wireless transmitter and receiver must be set to the same channel, but otherwise, the equipment handles all the work. If you can find your way around a smart phone, you can make a wireless point to point process connection.

There are likely many applications going unfulfilled because the cost or feasibility of making a wired connection is holding the project back. Reconsider the project using industrial wireless technology and you may find that the project becomes an attractive prospect.

Share your connectivity challenges with the application specialists at Arjay Automation, combining your own process knowledge and experience with their wireless communications expertise to develop an effective solution.