Wednesday, June 5, 2019

Guided Wave Radar Level Transmitters

Guided wave radar transmitters are widely used across different industries. These devices with their simple installation and trouble-free operations help industrial companies save time and money. They are ideal for a large number of process applications ranging from simple to complex.

How Do Guided Wave Radar Transmitters Work?

Guided wave radar transmitters rely on microwave pulses. Since microwaves are not affected by dust, pressure, temperature variations, and viscosity, this type of transmitter produces highly accurate results.

A low-energy microwave pulse is sent down a probe, and a part of it is reflected back when the pulse hits the process media. The liquid level is directly proportional to the time-domain reflectometry. The time when the pulse is launched and received back is measured to determine the distance from the surface of the media.

Types of Guided Wave Radar Level Transmitters

Guided Wave Radar Level Transmitter
Single Element Design
(NIVELCO)
Guided wave radar level transmitters are available in different probe configurations. Selecting the
right probe is important for successful implementation of the device. While manufacturers offer a range of guided wave radars, most are derived from the three basic probe configurations: single element, twin element, and coaxial.

Single element probe — The single element probe is the most widely used and least efficient device. The device is popular since it is more resistant to the coating of the liquid.

Twin element probe — The twin element probe is a good, general purpose probe that is generally used in long-range applications. They are ideal in situations where flexible probes are important for successful reading.

Coaxial probe — The coaxial probe configuration is the most efficient guided wave radar level transmitters. The probes are used in more challenging low-dielectric applications.

Benefits of Guided Wave Radar Level Transmitters

Guided Wave Radar Level transmitters provide a range of benefits in different applications. The concentration of the measuring signal is strong and clean. This is due to the narrow path of the signal propagation that reduces the chances of impact by stray signals due to obstacles or construction elements inside the tank.

Another benefit of guided wave radar level transmitters is that they are easy to install. No mounting holes are required to install the device. This results in cost savings for the organization. The waveguide can be formed to follow the tank’s contours or mounted at an angle.

The device is ideal in situations where an interface measurement is required. The measuring signals can penetrate the medium deeply, resulting in more accurate results. The waveguide technology is suitable for applications where the medium is subjected to heavy vapors, foam, and dust.

Guided Wave instruments can detect changes in dielectric consents on the boundary of a property. The device can be configured to detect level at both the top and the bottom of a layer of emulsion.

Industrial Application of Guided Wave Radar

Guided wave radar level transmitters are increasingly being used in process industries. The sensors are used in situations that previously employed ultrasonic, hydrostatics, and capacitance. The accuracy specification of the basic model range is up to ±5mm, while the accuracy of the advanced models is up to ±2mm.

The device is generally used in industries to take level readings. The readings are used for local indication and visualization in control systems.

Moreover, guided wave radar level transmitters are also used for managing liquid inventory, determining safety limits, dry run protection, and leak detection. Other applications of guided wave radar level transmitters include communicating low limits to suppliers, automated ordering systems, and streamlining the logistics process.

Guided radar level measurement is also suitable for bulk solids. The surface type is not restricted to liquids since the reflected waves are guided easily through any medium. Foam formation and turbulent liquid surfaces and different angled surfaces (as is the case with bulk solids) don’t influence the accuracy of the reading.

Selection of Guided Wave Radar Level Transmitters

Selection of guided wave radar level transmitters should be based on the requirements of the task. Generally, the rigid single element probe configuration is ideal for angled installations for flowing liquids. The dual flexible wire probe is suitable for most other common applications.

A coaxial probe configuration is recommended for liquids that are cleaner with low dielectric constant and with turbulence on the product’s surface. This type of guided wave radar device is also recommended for installations where the probe is near the tank wall or other obstacles.

Make sure that the device can withstand the range of temperature within the tank. Most GWR devices are rated up to 850 deg F or 450 deg C. You should select a device with added signal strength since this will result in increased reliability and accuracy of the devices.

Guided wave radar level transmitter with dynamic vapor compensation is recommended where a high level of accuracy is required under a high-pressure environment. The measurement taken from the device can compensate for changes in vapor dielectric, which results in improved accuracy.

Other factors that should be considered include mounting and proximity. Single probe configuration can be installed almost anywhere. But the single probe configuration can only to apply to specific situations.

Lastly, the probe length of the device should be of the right length. The length should be according to the measurement rate. This is an important consideration as it can help in ensuring accurate reading with minimum chances of an error.

Guided Wave radar level transmitters can also be used with an agitator. However, certain things must be considered prior to use the device. The probe must be prevented from contacting the agitator blades. Make sure that you confirm the ability of the probe to withstand the force inside the medium. This is important since turbulent on the surface may decrease the accuracy of the measurement. You can install the device in a bypass chamber or stilling well for an agitated tank.

For more information about guided wave radar transmitters, contact Arjay Automation. Call them at (800) 761-1749 or visit their web site at https://arjaynet.com.

Sunday, May 26, 2019

Bridging the Gap between HART Devices and IIoT, the Industrial Internet of Things

Manufacturing Plant of the Future

The typical process control model that involves decision making for the process at the local or centralized level by PLCs (Programmable Logic Controller) or BPCS (Basic Process Control System) is quickly changing. These systems installed yesteryear were never intended to deal with or even realize the amount of data they would have access to in the near future. There are certainly newer ERP, MES and asset management systems that collect some of this data now, but the more critical challenge that local manufacturing facilities face is manpower. Because streamlining of costs and overheads has left many manufacturing facilities with just enough personnel to keep the plant running, facilities no longer have the extra time, personnel and resources required to analyze data. For this reason we are seeing third party companies, and even some of the larger process control vendors, offer leasing or annual agreements that involve collecting, storing, and analyzing all sorts of process data. This data is part of a larger predictive analytics strategy that can not only forewarn operators of impending problems to come, but is also being used to optimize the process itself. This type of cloud automation looks to gather as much data as possible to reduce operating expenditures and future capital expenditures for future plant builds.


So the challenge remains: how do existing and new manufacturing facilities find a cost effective way to get critical plant floor data up to higher level information systems? The answer is to take advantage of the digital HART data you already have installed but either didn’t know it was there or couldn’t afford the equipment upgrades to gain access to it.

This white paper, courtesy of Moore Industries, will outline how the flow of process and diagnostics data from smart HART digital field instruments can now be shared with mid and higher level control, asset management and data information systems without having to upgrade expensive process control interface equipment. Additionally, features and considerations of devices that enable this sharing of data will be reviewed and suggested.

Table of Contents
  • Plant of the Future
  • HART Protocol’s Persistence
  • HART Primer
  • HART Revisions and Compliance
  • HART Dynamic and Device Variables
  • HART Hosts and Revisions
  • HART Interface Options
  • Employing the Extracted HART Data
  • Cybersecurity Considerations
  • Configuration of IIoT Devices
For more information, contact Arjay Automation, LLC. Call (800) 761-1749 or visit https://arjaynet.com.

Friday, April 26, 2019

Basics of Industrial Flame Arresters


Flame arresters are a passive devices with no moving parts, engineered to allow hot gas to pass through its body, while stopping a flame, thus preventing a larger fire or explosion.  Flame Arresters uses a wound metal ribbon type element that prevents the spread of flame from the exposed side of the arrester to the protected side of the arrester. The metal element's construction provides a matrix of engineered openings that are carefully calculated and sized to quench the flame by absorbing the flame's heat. As an explosion flame travels through a narrow metal space, heat is transmitted to the walls, energy is lost and only vapor gasses are able to pass through. Flame Arresters are used in many industries such as mining, power generation, petrochemical, chemical,  wastewater treatment, pulp and paper, refining, and pharmaceutical.

For more information on flame arresters, contact Arjay Automation:
https://arjaynet.com
(800) 761-1749

Sunday, April 21, 2019

The SENCOM™ SMART Sensor Platform from Yokogawa

SENCOM™ SMART Sensor Platform
The SENCOM™ SMART Sensor Platform has been designed with a strong focus on Yokogawa's digital SMART sensors and provides greater insight and enhanced capabilities for more reliable data across the entire product lifetime.

Yokogawa's latest SMART sensor system enhances the operation, reliability, and credibility of online process analyzers, from the engineering and purchasing to modification and optimization, by using the latest sensing technologies and asset management tools.

The SENCOM™ SMART Sensor Platform has been designed with a strong focus on Yokogawa's digital SMART sensors and provides greater insight and enhanced capabilities for more reliable data across the entire product lifetime.

Yokogawa's latest SMART sensor system enhances the operation, reliability, and credibility of online process analyzers, from the engineering and purchasing to modification and optimization, by using the latest sensing technologies and asset management tools.

Simple Setup and Configuration

SENCOM™ SMART Sensor PlatformThe SENCOM™ 4.0 Platform is designed with an intuitive menu structure, easy-to-understand configuration, alarm settings, and clear error-fixing information to help you make credible and reliable measurements of online process control.

Environmentally Friendly Design

Conventional SMART sensors include integrated electronics on top of an analog sensor, therefore the still operating electronics must be thrown away once the sensor has reachable the end of its lifetime, adding to global waste.

SENCOM™ SMART Sensor PlatformThe SENCOM™ 4.0 platform includes a reusable SMART adapter, so only an analog sensor has to be removed when it reaches the end of its lifetime, thereby reducing waste and costs.

Easy and Efficient Maintenance

The Maintenance Manager is a data management system that allows technicians to forecast maintenance and calibration frequency, estimate the service life of the sensor, and estimate the life expectancy of the sensor.

Calibration data are stored within the memory chip of the SMART sensor using the SENCOM™ 4.0 platform. Once the sensor is connected to the analyzer, it is possible to download or upload the latest calibration data to the FLXA402 analyzer, thus avoiding the need for field calibration.



Arjay Automation, LLC
https://arjaynet.com
(800) 761-1749

Friday, March 22, 2019

Webinar: pH Basics - Quick and Dirty Tips by Yokogawa

Yokogawa Webinar
March 28, 2019 2 PM Eastern

The pH electrode offers by far the greatest sensitivity and rangeability of any measurement. Making the most out of your pH readings requires proper mixing and control.

Join this webinar and learn how to monitor, troubleshoot, and maintain electrodes and control valves. Review control strategies for pH applications critical to product and water quality in the process industry.

In this webinar, you will learn:
  • Fundamental requirements for pH measurements
  • The importance of proper maintenance and calibration techniques
  • The value and use of equipment diagnostics.
Date: March 28, 2019
Time: 2:00 PM Eastern  
Duration: 1 Hour

Thursday, March 14, 2019

Process Weighing Systems Overview

High-accuracy, batch-processing tank
fully supported by KIS Weigh Modules.
In its simplest form, a weigh system consists of a vessel whose contents are to be monitored, load cells or weigh modules that generate a signal proportional to the vessel weight, and an electronic device to power, amplify, interpret and display the signal. However, the accuracy of such a system, while obviously a function of the instrumentation, is also dependent upon the vessel design (reactor, batch tank, inventory silo, etc.), support structure, piping attachments, lateral restraint system, vessel environment (temperature, traffic, nearby equipment), and proper selection of transducer accessories. In short, weigh system accuracy is inexorably tied to the degree of attention given to the mechanical details and vessel functionality.

High accuracy, process weighing systems exhibit system errors under 0.05% for buy-and-sell to 0.25%. Precision load cells or weigh modules with full temperature compensation must be used. To achieve this, the following mechanical requirements are imposed:
  • The weigh vessel must be fully supported by load cells/weigh modules. The number of load cells/weigh modules may vary from one (in tension) to eight (in compression). Generally, as the number of load cells de-creases, the vessel wall thickness and support structure stiffness must increase to carry the higher vessel support reactions lest vessel deformation cause calibration errors.
  • Mechanical restrictions from attached piping and lateral restraints should be avoided. Highly flexible piping attachments are recommended.
  • Hot gas or steam-heating schemes which produce variable buoyancy should be avoided. Consult factory for alternate solutions.
  • Low accuracy inventory weighing systems are those with a system error greater than 0.5%. General purpose cells/ modules are satisfactory for these systems. Mechanical considerations are relaxed considerably:
  • The weigh vessel need only be partially supported by load cells/weigh modules, usually one or two on any side or end of the vessel. This, however, requires the contents to be self-leveling and the vessel itself to be without partitions, so that the load fraction carried by the load cells/ modules is unchanging. (Vessels falling into these two categories must be fully supported, independent of the accuracy required.)
  • Modest mechanical restrictions may be tolerated, but nonlinear mechanical hang-ups or frictional interfaces must still be avoided.
Accuracy Versus Repeatability

Low-accuracy, storage silo partially
supported by KIS Weigh Modules.
Do not confuse system accuracy with repeatability! As long as the mechanical error in a given system is linear with deflection and independent of the environment (temperature, traffic, surrounding vessels, etc.), the inherent system repeatability will be greater than its accuracy. For example, BLH Nobel Transducer Indicators typically have an overall accuracy specification of 0.01% of reading, ±1 count (or better), of which repeatability is but a small fraction. BLH Nobel load transducers, meanwhile, typically display a repeatability of 0.01 to 0.02%. Thus, most BLH Nobel systems will be repeatable within 0.03% of full scale, independent of how the system is calibrated. For most batching operations, repeatability is essential, whereas accuracy (actual pounds used) is of secondary importance once the operating parameters have been established. Field calibration, when required, is generally done by electronic simulation. For buy-and-sell installations, where distribution is by weight, calibration and repeatability are essential; field calibration is always performed employing a dead weight method.

Definitions:
  • Accuracy - Ability of the system to perform weighing functions within an acceptable or desirable tolerance; usually stated as a percentage of either full-scale reading, or ±n count(s) referred to the total number of scale divisions.
  • Repeatability - The ability of the system to read the same value when the measured weight is applied repeatedly in the same manner with the same quantity under constant conditions.
Maximum accuracy and repeatability is obtained by placing high accuracy load cells/modules at all support points and connecting them to instrumentation that measures each cell/module individually.

For more information on any process weighing application, contact Arjay Automation. They can be reached by phone at (800) 761-1749, or visit them on the Web at https://arjaynet.com.